In welchem Punkt schneiden sich die Geraden zu y = 2x - 1 und y = -x + 3?

1. Zeichnerische Lösung

Zur Bestimmung einer ersten Näherung geben wir die Funktionsterme im y-Editor (Aufruf mit $Y=$) ein und	Plot1 Plot2 Plot3 \Y182X-1 \Y28-X+3 \Y3= \Y4= \Y5= \Y6= \Y7=
zeichnen die Graphen mit GRAPH.	Y1=2X-1
Wechseln Sie mit TRACE in den Spur-Modus und	
"wandern" Sie mit den ∣ und ∣ Tasten über einen der	
Graphen. Dabei können Näherungen für die Koordinaten	
der Schnittpunkte auf dem Display abgelesen werden.	$ \Lambda \rangle$
(Genauere Ergebnisse erhält man durch Hineinzoomen!	
Auf den anderen Graphen gelangt man mit 🛆 .)	X=1.2765957 Y=1.5531915

2. Berechnung im Graphikfenster:

Aus dem letzten Fenster heraus wird mit <u>2ND</u> — <u>CALC</u> und der Auswahl von 5: intersect ein Programm zur Schnittpunktberechnung gestartet.	1:value 2:zero 3:minimum 4:maximum 5:dy/dx 6:dy/dx 7:Jf(x)dx		
Nun muss der erste Graph mit ENTER ausgewählt	Y1=2X-1		
werden. Ebenso bestätigt man die Auswahl des zweiten	First curve?		
Graphen und einen Näherungspunkt mit ENTER .	X=.95744681 Y=.91489362		
Als Ergebnis werden die numerischen	Intersection		
Schnittpunktkoordinaten angezeigt.	X=1.3333333 Y=1.66666667		

3. Lösung eines linearen Gleichungssystems

-		
Den Schnittpunkt erhält man	auch als Lösung eines line	earen Gleichungssystems.

$$y = 2x - 1 \qquad \Leftrightarrow 2x - y = 1$$
$$y = -x + 3 \qquad \Leftrightarrow x + y = 3$$

Die Koeffizienten des umgeformten LGS kann man in einem Schema anordnen, das

wir als Matrix bezeichnen:

 $\begin{pmatrix} 2 & -1 & 1 \\ 1 & 1 & 3 \end{pmatrix}$

Die Eingabe der Matrix geschi der Auswahl von EDIT mit ▷ ▷ . Bestätigung mit ENTER erstellt Hier erhält die Matrix die Bezei	eht mit <u>2ND</u> — <u>MATRIX</u> und Sie kann nach der werden. chnung [A].	NAMEA LB LB LD LD LE LG LE LG LG	5 MATH]]]]]]]	
Geben Sie 2 als Anzahl der Ze Spalten ein (erste Zeile in der A und anschließend alle oben no Jede Eingabe wird mit ENTER b	ilen und 3 als Anzahl der Anzeige: MATRIX [A] 2 x 3), tierten Koeffizienten. bestätigt.	MATR: [2 [1	IX[A] : 1	2 ×3 8
Verlassen Sie den EDITOR mit	t 2ND-QUIT.	2,3=	3	
Den Befehl zur Lösung des Gle Sie nach der Eingabe von 2ND- unter B: rref(. (rref steht für <i>row-reduced-form</i>	eichungssystems finden -MATRIX im MATH-Menü n.)	NAMES 9†Lis 0:cur A:ref 38rre C:rou D:rou	5 Dimut st⊧matu mSum(f(ef(wSwap(w+(EDIT r(
wanien Sie diesen Befeni mit E	ENTER aus.		ow(■ Motu	- DIT
Nun muss noch mit <u>2ND–MATR</u> ausgewählt werden. Bestätiger ENTER .	⊠ die Matrix [A] n Sie die Auswahl mit	18 23 45 45 67 ↓ [G		EDIT
Schließen Sie die Klammer. Na Eingabe mit <u>ENTER</u> kann die Lö Gleichungssystems abgelesen	ach Abschluss der ösung des werden.	rref [[1 ([0 :	([A]) 0 1.33 1 1.66	33333 66666
Die ausgegebene Matrix lautet	(1 0 1.3333333) 0 1 1.66666666). Sie	steht fü	ir das umg	jeformte
Gleichungssystem:	1x + 0y = 1.33333333 0x + 1y = 1.66666666 od	er kurz	x = 1.3333 y = 1.6666	3333 6666

Lösung: Der Schnittpunkt der beiden Geraden hat die Koordinaten $S(\frac{4}{3} | \frac{5}{3})$.